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Abstract

Forward scattering theorem for elastic longitudinal and shear wave scatterings by an arbitrary-shaped three-

dimensional object embedded in a viscoelastic medium is derived. It is shown that the formulae for extinction cross-

sections of an object in an energy-absorbing medium are formally the same with those of the object in the lossless elastic

medium. Numerical calculations are executed for the longitudinal wave scattering in an epoxy matrix by a spherical

inclusion with different material properties. The condition of negative extinction is examined with the causality con-

straint on the viscoelastic medium taken into account. It is found that the negative extinction occurs in the Rayleigh

limit when the attenuation of the medium is sufficiently high and, more restrictedly, the wave speed in the object is

larger than that in the medium, while it occurs less likely in the high frequency range considered in this paper

(0 < ka < 100).
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1. Introduction

The forward scattering theorem (or the optical theorem) is one of the fundamental results in the scat-

tering theory and is physically and formally common to any type of waves (Feenberg, 1932; van de Hulst,

1949; Jones, 1955; Tan, 1976; Varatharajulu, 1977). The evaluation of extinction (total) cross-sections of a
scattering object embedded in an absorbing medium is often demanded, for example, in the analysis of

wave propagation in inhomogeneous materials (Niklasson et al., 1981; Beltzer and Brauner, 1987; Biwa,

2001; Kim, 2003). The extinction cross-section is defined as the rate at which energy is abstracted from the

incident wave during the process of scattering. It is usually derived applying the principle of energy con-

servation to the scattering problem. When the surrounding medium is lossless, the total extinguished power

is expressed as the sum of the power scattered and absorbed by the object. The scattered power may be
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evaluated either on the surface of a hypothetical sphere enclosing the object (Varatharajulu, 1977; Gu-

bernatis et al., 1977) or on the object surface (de Hoop, 1959; Tan, 1976).

When the medium is absorbing, the energy extinction is not readily obvious since not only the object but

also the medium itself participate in the energy extinction process. Even without an object, the incident
wave energy is extinguished in the medium. This fact leads to, as was pointed out by Bohren and Gilra

(1979), an expression of energy extinction that depends on the size of the hypothetical sphere which is

introduced as a purely mathematical device. Consequently, the decomposition of the extinction into con-

tributions of scattering and absorption (in the medium) becomes unclear. Therefore, the argument of the

conservation of energy based on the hypothetical sphere seems no longer appropriate to derive the ex-

tinction cross-section in the absorbing medium. This fact may mislead to conclusion that an exact

expression of the extinction cross-section does not exist in the absorbing medium. However, the definition

of the extinction cross-section does not require the energy conservation to hold.
There have been attempts to extend the ordinary extinction cross-section to the case of a cylindrical

object in the absorbing medium (Beltzer and Brauner, 1987; Brauner and Beltzer, 1988; Biwa, 2001). Since

their formulations still relied on the energy conservation, as shown in (Kim, 2003), their formulae for

extinction cross-sections are valid in the low frequency region where the effect of the absorption is less

significant.

In this paper, the forward scattering theorem for elastic wave scatterings by an arbitrary-shaped three-

dimensional object embedded in an absorbing medium is derived based on a direct mathematical formu-

lation of an actual experiment for measuring optical extinction (van de Hulst, 1949; Bohren and Gilra,
1979; Wymer and Lakhtakia, 1995). Numerical results of extinction cross-sections of a spherical object with

different material properties in epoxy matrix are presented. The conditions under which the paradoxical

negative extinction phenomenon occurs are investigated.
2. Far-field scattering amplitudes

Consider a three-dimensional inclusion embedded in an infinite homogeneous viscoelastic medium

having density q and Lam�ee elastic constants k and l. The inclusion may be an empty or fluid-filled cavity or

an elastic (or viscoelastic) solid of arbitrary shape. The configuration of the elastic wave scattering by the

inclusion is schematically depicted in Fig. 1, and detailed analysis is given in Appendix A.

The displacement and stress fields of an incident time-harmonic ðexpð�ixtÞÞ plane longitudinal wave

propagating in z-direction can be written as
Fig. 1. Schematic showing plane wave scattering by an arbitrary-shaped object, a hypothetical sphere and a detector in the far-field.

The detector measures the wave amplitude on its front face without disturbing the wave field.



J.-Y.F. Kim / International Journal of Solids and Structures 40 (2003) 4319–4329 4321
uincz ¼ ikpU0e
ikpz; ð1Þ
rinc
z ¼ �k2pU0ðk þ 2lÞeikpz; ð2Þ
where kpð¼ x=CpÞ is the wavenumber associated with the longitudinal wave speed Cp ¼ ððk þ 2lÞ=qÞ1=2. U0

which has the dimension of length square is set to be unity for brevity and thus does not appear in the

following equations. The scattered displacement vector in the far-field (see Appendix A) is
uscaðrÞ � r̂rfpðr̂rÞ
eikpr

r
þ ĥhfs1ðr̂rÞ
h

þ ûufs2 ð̂rrÞ
i eiksr

r
; ð3Þ
where r̂r, ĥh, ûu are unit vectors in the spherical coordinate system shown in Fig. 1; r ¼ jrj ¼ ðx2 þ y2 þ z2Þ1=2 is
the distance from the coordinate origin to a receiver at ðx; y; zÞ; fpðr̂rÞ, fs1ðr̂rÞ and fs2ðr̂rÞ are directivity patterns

of scattered longitudinal (P) and two mutually orthogonal shear (S1 and S2) waves; ksð¼ x=CsÞ is the

wavenumber associated with the shear wave speed Cs ¼ l=qð Þ1=2. The wavenumbers are complex-valued,

that is, kp;s ¼ k0p;s þ ik00p;s, where imaginary parts are the longitudinal and shear wave attenuation coefficients.

Accordingly, the elastic constants and the wave speeds are all complex-valued, and thus frequency-

dependent.
The scattered stress dyadic in the far-field is
rscaðrÞ � ikp kI
h

þ 2lr̂rr̂r
i
fpðr̂rÞ

eikpr

r
þ iksl ðr̂rĥh

h
þ ĥhr̂rÞfs1ðr̂rÞ þ ðr̂rûu þ ûur̂rÞfs2 ð̂rrÞ

i eiksr
r

: ð4Þ
3. Forward scattering theorems

To derive the forward scattering theorem for the elastic wave scatterings in an absorbing medium, an

experimental setup shown in Fig. 1 is considered. This is a simplified schematic of the actual experiment for

measuring optical extinction (Bohren and Huffman, 1983) by a single particle or a cluster of particles. A

planar detector is located at a large distance from the object in the forward direction such that kpz 	 1 and

ksz 	 1. In the elastic wave scattering, it is assumed that the detector measures but does not disturb the

wave field. This assumption is not necessary in the optical scattering because the geometrical limit ap-

proximation can be applied.
The energy extinction due to whatever reasons such as scattering and/or absorption should appear as a

reduction in the amplitude of the incident plane wave after traveling a large distance. Therefore, by

comparing intensities of wave fields at the same location far behind the object in the absence and in the

presence of the object, the effect (the decrease of the wave intensity) owing solely to the object can be

evaluated (van de Hulst, 1949; Bohren and Gilra, 1979). This approach is certainly an alternative to the

conventional approach calculating the energy flux out of the surface of the hypothetical sphere, and does

not rely on the energy conservation principle. In fact, this approach implements the definition of extinction

cross-section in a straightforward manner. van de Hulst (1949) and Bohren and Gilra (1979) used this
approach to derive the forward scattering (optical) theorem for the light wave, Wymer et al. (1995) for the

acoustic wave in a viscous fluid and Kim (2003) for elastic waves in two-dimensional space.

The average power received by the detector with area AD can be expressed as
PD ¼ I incz AD þ P ext
D ; ð5Þ
where I incz and P ext
D denote the intensity of the incident wave and the extinguished power at the detector,

respectively. Then, the extinction cross-section is obtained by its definition as
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Rext ¼ � P ext
D

I incz

: ð6Þ
The average power received by the detector is
PD ¼ x
2
Im

Z
AD

ðrinc
zj þ rsca

zj Þ �uuincj

�
þ �uuscaj

�
dA ð7aÞ

¼ x
2
Im

Z
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j dA

�
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Z
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zj �uu
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Z
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sca
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j dA

�
ð7bÞ

¼
Z
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I incz dAþ
Z
AD

I scaz dAþ
Z
AD

Iextz dA ð7cÞ

¼ I incz AD þ P sca
D þ P ext

D ; ð7dÞ
where the overbar denotes the complex conjugate.

From Eqs. (1) and (2), the intensity of the incident wave is
I incz ¼ x
2
Im½iðk þ 2lÞkp� kp

�� ��2e�2k00pz: ð8Þ
From Eqs. (3) and (4), the scattered power at the detector is
P sca
D ¼ x

2
Im

Z
AD

I scar cos h
	

� I scah sin h


dA ð9aÞ
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2
Im iðk
"

þ 2lÞkp
Z
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If the detector is observed to be small from the coordinate origin (cos h � AD ! AD and sin h � AD ! 0)

and the functions in the first two integrals are not oscillatory, Eq. (9b) can be approximated with its leading

terms as z ! 1
P sca
D � x

2
Im½iðk þ 2lÞkpjfpðẑzÞj2e�2k00pz þ ilksðjfs1ðẑzÞj

2 þ jfs2ðẑzÞj
2Þe�2k00s z�AD

z2
; ð10Þ
where ẑz denotes the unit vector in z-direction. At a sufficiently large distance kp;sz 	 1, the scattered power

P sca
D decreases Oðz�2Þ faster than the power of the incident wave as z ! 1, and therefore it can be neglected.

The extinction power due to interference of the incident and scattered waves is
P ext
D ¼ x

2
Im

Z
AD

ðrsca
zz �uu

inc
z þ rinc

zz �uu
sca
z ÞdA ð11aÞ
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Note that the following relations are used to represent the scattered displacement and stress fields in the

rectangular coordinate system
uz ¼ ur cos h � uh sin h; ð12Þ
rzz ¼ rrr cos
2 h þ rhh sin

2 h � 2rrh cos h sin h: ð13Þ
The integrals in Eq. (11b) can be commonly in the following form
J ¼
Z
AD

gðx; yÞeikznðx;yÞ dA: ð14Þ
The asymptotic value of this type of integral can be obtained by applying the method of stationary phase

(Born and Wolf, 1987). The only critical point at which the exponential function in the above integral has

stationary phase, on=oxðx0; y0Þ ¼ 0 and on=oyðx0; y0Þ ¼ 0 is ðx0; y0Þ ¼ ð0; 0Þ (or r̂r ¼ ẑz) as z ! 1; the leading
term of the integral Eq. (14) is
J � 2piz
k

gð0; 0Þ: ð15Þ
Thus, evaluating the integrals in Eq. (11b), the extinction power at the detector is
P ext
D ¼ x

2
Im½iðk þ 2lÞkp�jkpj2e�2k00pz � 4pRe

fpðẑzÞ
k2p

" #
: ð16Þ
The extinction cross-section is obtained, according to Eqs. (6), (8) and (16), as
Rext
p ¼ �4pRe

fpðẑzÞ
k2p

" #
: ð17Þ
Those for the shear waves (S1 and S2) can be derived in the same manner
Rext
s1;s2

¼ �4pRe
fs1;s2ðẑzÞ

k2s

" #
: ð18Þ
Eqs. (17) and (18) are the forward scattering theorems generalized for elastic wave scatterings in the

absorbing medium and in the same forms, with a rearrangement to account for the complex wavenumbers

(kp and ks), as those in the lossless elastic medium (Tan, 1976; Varatharajulu, 1977). The same results have

been obtained using the integral equations for the scattered elastic wave fields (Kim, submitted). It has been

noted by Lim and Hackman (1990) that the additional off-axis term in the expression of extinction cross-
section by Gubernatis et al. (1977) is erroneous. Therefore, the ordinary forward scattering theorems holds

equally in the absorbing medium. This may be the consequence of the fact that the scattering analysis in an

absorbing medium can be formally the same as in the lossless medium if the absorption of the medium is

considered with the complex wavenumbers.

The present result is not so surprising in that since the scattered wave forms the shadow in the forward

direction and interferes with the incident wave causing the amplitude reduction, the total extinguished

power by any possible mechanism, whether the medium is absorbing or non-absorbing, should be pro-

portional to the forward scattering amplitude. The absorption by the object is considered already in the
scattered wave amplitude when it is determined through boundary conditions at the object surface.
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4. Numerical results and discussion

Numerical calculations have been performed for the longitudinal wave scattering by a spherical inclusion

in a highly absorbing viscoelastic epoxy (EPON 828Z) matrix. Fifteen different materials (including the
vacuum) that have been considered for the inclusion are categorized into six different groups of materials

according to their elastic properties as listed in Table 1. The materials in the same group exhibit a similar

behavior. The attenuation in the materials is assumed to increase linearly with frequency, k00p;s ¼ mp;sx.

Although this is most appropriate to viscoelastic polymers, the same rule is applied to some metallic

materials considered in this paper. The proportionality constants mp and ms are also shown in Table 1. The

wave speeds of materials in groups B–D as well as the epoxy matrix are frequency-dependent. The values

shown in the Table 1 are wave speeds at x ¼ 0 (Cpð0Þ and Csð0Þ), which are thus real quantities.

Fig. 2 shows normalized extinction cross-sections Rext
p =pa2 for six representative materials (one from each

group) in the normalized frequency range, 06 k0p0a6 100, where a denotes the sphere radius and

k0p0 ¼ x=Cpð0Þ. Aluminum and polystyrene spheres show negative extinction values. One may expect that

the negative extinction occur at resonance frequencies of the sphere where the incident wave power is

absorbed efficiently producing minima in the scattering power spectrum. However, due to the high rate of

energy loss in the matrix, the resonances of the elastic sphere cannot be supported strongly. It is noted that

the negative extinction occurs rather at minimum positions of the slowly undulating contribution as shown

in Fig. 2. This contribution to the extinction cross-section is due to interference of the waves circumnav-

igating around the object in opposite directions that is called the background of the scattering object in the
resonance scattering theory (Brill and Gaunaurd, 1987). This observation illustrates significance of the

absorption of the medium over the scattering effect in extinguishing the wave energy.

Some comments have to be made in comparison with the results of Brauner and Beltzer (1988) for

horizontally polarized shear wave scattering by a circular cylinder. Some of their results show negative
Table 1

Material properties used in the calculations

Groupa Material Cp (x ¼ 0) (m/s) Cs (x ¼ 0) (m/s) mp (s/m) ms (s/m) q (kg/m3)

Matrix Epoxy (Epon 828Z) 2640 1200 0.73· 10�5 0.22· 10�4 1202

A Glass 5280 3240 – – 2490

Aluminum 6305 3113 – – 2690

Magnesium 5770 3050 – – 1740

HPA 7056 3753 – – 3160

B Copper 3700 2300 0.93· 10�6 3.22· 10�6 8230

Silver 2700 1600 0.12· 10�6 0.47· 10�6 10 500

Lead 2210 860 0.38· 10�5 0.17· 10�4 11 300

Gold 2000 1200 0.12· 10�6 0.47· 10�6 19 300

C TiC 10 000 6200 – – 4900

Steel 5940 3220 0.10· 10�6 0.41· 10�6 7800

Germanium 5285 3376 – – 5360

D Polystyrene 2400 1102 0.60· 10�6 0.18· 10�5 1050

PMMA 2669 1305 0.22· 10�5 0.07· 10�4 1170

E Water 1460 – – – 1000

F Vacuum – – – – –

aCharacteristics of materials in different groups are A: stiff and light; B: soft and heavy; C: stiff and heavy; D: polymers whose

properties are close to those of the matrix.



Fig. 2. Extinction cross-sections for longitudinal wave scatterings in the epoxy by a sphere with different material properties. (a)

Aluminum, (b) copper, (c) TiC, (d) polystyrene, (e) water, (f) cavity.
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extinctions in 56 ksa6 10. However, this is unlikely to be so because of the following two reasons: First, the

extinction cross-section was underestimated in their theory at frequencies higher than ksa ¼ 2 as shown in

Kim (2003); second, the Kelvin–Voight viscoelasticity model used in their calculations gives the attenuation

that increases with frequency faster than a linear function. The causality constraint for a material to be

physically realizable bounds the attenuation to increase with frequency not as fast as a linear function of x
as x ! 1 (Weaver and Pao, 1981). Consequently, the Kelvin–Voight viscoelasticity model produces un-

physically high attenuation rate, which resulted in the negative extinction in relatively low frequency region

(Brauner and Beltzer, 1988). The linearly increasing attenuation with quite high proportion rate for the

epoxy considered in this paper may be regarded as nearly maximum admissible attenuation in real vi-

scoelastic materials. Nonetheless, among fifteen materials that have been simulated, only aluminum,

polystyrene and PMMA showed negative extinction in 16 k0p0a6 100. Therefore, the negative extinction is

quite difficult to occur in the elastic medium at high frequencies, whereas it occurs in a wide frequency range

in the viscous fluid (Wymer et al., 1995). It is noted that the normalized extinction cross-section of a
spherical cavity (Fig. 2(f)) tends to two times the geometrical cross-section in the high frequency limit

k0p0a ! 1 just as in the lossless medium. This is analogous to the electromagnetic wave scattering by a

perfectly conducting sphere (Wymer and Lakhtakia, 1995).

The normalized extinction cross-sections of the spherical inclusion in the low frequency k0p0a6 1 are

plotted in Fig. 3 for the six representative materials. Most of the materials have negative values of the

extinction cross-section except for the spherical cavity and the water-filled sphere. It is interesting that

this phenomenon occurs well in the low frequency range in which the dynamic effect is usually neglected

and thus the attenuation of the medium might have been omitted in the calculation. The polystyrene
sphere shows a small negative extinction in this frequency region due to very small difference in material



Fig. 3. Extinction cross-sections for longitudinal wave scatterings in the epoxy by a sphere with different material properties in the

Rayleigh limit.
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properties. The negative extinction seems to be apparently paradoxical but it can be readily understood: In

a medium which is more absorbing than the scattering object, it is possible for the detector to receive more

energy when the object is present than when it is absent (Bohren and Gilra, 1979). In fact, the negative

extinction in the low frequency is because the extinction due to the scattering is smaller than the extinction

due to the viscoelastic loss in the same volume that the object occupies.

To find conditions in terms of properties of the constituent materials under which the negative extinction
occurs in the Rayleigh limit, the following simulations are performed. The parameters that influence the

extinction cross-section are attenuations in the medium and in the object, k00p=k
0
p, k

00
s =k

0
s, j00

p=j
0
p, j00

s =j
0
s; ma-

terial property contrasts, Cp=cp, Cs=cs, q2=q1; ratios between longitudinal and shear waves, Cp=Cs, cp=cs; the
frequency, k0p0a. Here, jp;sð¼ j0

p;s þ ij00
p;sÞ and cp;s are complex wave numbers and wave speeds in the in-

clusion. To reduce the number of parameters, the attenuation in the object is ignored. It is also assumed

that k00p=k
0
p ¼ k00s =k

0
s and Cp=Cs ¼ cp=cs. These assumptions do not remove the generality of the simulation

since they are fairly reasonable in many materials. The frequency is k0p0a ¼ 0:05; the longitudinal wave speed
of the surrounding medium is Cp ¼ 2640 m/s; Cp=Cs ¼ 2:2 at this frequency. Then, the remaining pa-
rameters are k00p=k

0
p, Cp=cp and q2=q1. In Fig. 4, the conditions of the negative extinction in terms of the

normalized attenuation and the wave speed ratio are shown for different density ratios. The dark areas are

where the extinction cross-section has negative values at this frequency. Note that the condition may vary,

but slightly, depending on the frequency. It is interesting to note that the negative extinction occurs mostly

when Cp=cp < 1, which is also the reason that the cavity and the water-filled inclusion have non-negative

extinctions as shown in Fig. 3. The occurrence conditions depend strongly on the density ratio. For ex-

ample, the negative extinction can occur only for very high attenuation and 0:3 < Cp=cp < 1, when

q2=q1 ¼ 3:0. When q2=q1 > 3:0, the negative extinction does not exist for any material combination. For
other density ratios, it occurs in the medium with quite high attenuation, k00p=k

0
p > 2� 10�4. A full physical

understanding of the dependence of the negative extinction on the parameters is quite complicated.

However, since the condition depends on relative dominance between the scattering and the absorption and

intuitively the scattered wave amplitude is determined by reflectivity (or transmissibility) of the object, the

occurrence conditions shown in Fig. 4 will be related closely to these properties of the object. The ratio of

acoustic impedances between the matrix and the object (q2c=q1C) along with k00p=k
0
p may be used in the

further study.



Fig. 4. Conditions for the negative extinction in the Rayleigh limit (k0p0a ¼ 0:05). (a) q2=q1 ¼ 3:0, (b) q2=q1 ¼ 1:1, (c) q2=q1 ¼ 0:5, (d)

q2=q1 ¼ 0:01.
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5. Conclusion

The ordinary forward scattering theorem for elastic wave scatterings in the lossless medium is generalized

to the case in which the medium is energy-absorbing. The mathematical formulation is inspired by the

actual experiment for measuring the optical extinction. The derived expressions of extinction cross-sections

are in the same forms with those for the lossless medium. The conditions of the negative extinction are

investigated for different materials in different frequency regions. It is found from numerical calculations
that the negative extinction occurs in the Rayleigh limit when the attenuation of the medium is sufficiently

high and, more restrictedly, the wave speed in the object is larger than that in the medium.
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Appendix A. Elastic wave scattering by a three-dimensional object

The formal analysis of elastic waves scattering by a three-dimensional object has been given by Varat-

harajulu (1977). Therefore, those equations in (Varatharajulu, 1977) can be directly adopted only with a

sign correction. The potentials for the plane time-harmonic incident longitudinal (P) wave propagating in
z-direction are written as
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Uinc ¼ U0e
iðkpz�xtÞ; ðA:1Þ

Winc ¼ 0; ðA:2Þ

Pinc ¼ 0; ðA:3Þ
where x is the angular frequency. The displacement and stress fields are found by the following rela-

tions
u ¼ rU þ ksr� ½̂rrW� þ r �r� ½̂rrP�; ðA:4Þ

r ¼ kIr � uþ lðruþ urÞ; ðA:5Þ
where I is the second order identity tensor.

The potentials for the scattered longitudinal wave and two mutually orthogonal shear waves (Morse and

Feshbach, 1953) are
Usca ¼ U0

X1
n¼0

Xn
m¼0

cmn½AnY e
nmðh;/Þ þ BnY o

nmðh;/Þ�hnðkprÞ; ðA:6Þ

Wsca ¼ U0

X1
n¼0

Xn
m¼0

cmn½CnY e
nmðh;/Þ þ DnY o

nmðh;/Þ�hnðksrÞ; ðA:7Þ

Psca ¼ U0

X1
n¼0

Xn
m¼0

cmn½EnY e
nmðh;/Þ þ FnY o

nmðh;/Þ�hnðksrÞ; ðA:8Þ
where Y e;o
nm ðh;/Þ are the even and odd spherical harmonics, hnðkrÞ is the first kind spherical Bessel function

of order n, and An, Bn, Cn, Dn, En and Fn are unknown scattering coefficients that can be determined from

boundary conditions. The normalization constant cmn is given by
cmn ¼ ½enð2nþ 1Þðn� mÞ!=4pðnþ mÞ!�1=2; ðA:9Þ

where en is the Neumann factor (e0 ¼ 1, en ¼ 2 for n > 0). Here, it should be noted that in the Debye

scattering theory the scattering fields in Eqs. (A.6)–(A.8) can be assumed in the same forms regardless of

whether the surrounding medium is lossless or absorbing.

In the far-field, the spherical Hankel functions can be approximated as
hnðkrÞ � ð�iÞnþ1 e
ikr

kr
: ðA:10Þ
Then, one obtains the far-field asymptotic scattered displacement field as Eq. (3) and the scattering

amplitudes or the directivity patterns are
fpð̂rrÞ ¼
X1
n¼0

Xn
m¼0

cmni
�n½AnY e

nmðh;/Þ þ BnY o
nmðh;/Þ�; ðA:11Þ

fs1ðr̂rÞ ¼
X1
n¼0

Xn
m¼0

cmn
i�ðnþ1Þ

sin h
o

o/
ðCnY e

nmðh;/Þ
"

þ DnY o
nmðh;/ÞÞ � i�n o

oh
ðEnY e

nmðh;/Þ þ FnY o
nmðh;/ÞÞ

#
;

ðA:12Þ
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fs2 ð̂rrÞ ¼
X1
n¼0

Xn
m¼0

cmn i�ðnþ1Þ o

oh
ðCnY e

nmðh;/Þ
�

þ DnY o
nmðh;/ÞÞ þ

i�n

sin h
o

o/
ðEnY e

nmðh;/Þ þ FnY o
nmðh;/ÞÞ

�
:

ðA:13Þ
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